Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.493
Filtrar
1.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605043

RESUMO

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Assuntos
Sequestro de Carbono , Florestas , Árvores , China , Biomassa , Carbono/análise
2.
J Environ Manage ; 357: 120801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588622

RESUMO

Straw incorporation has been considered as an effective environmental management application to improve soil erosion resistance (SER) and organic carbon sequestration. SER is useful to evaluate soil erosion subjected to concentrated flow. Nevertheless, few studies have been performed to examine how SER varied with the amount of straw incorporation on sloping croplands in high latitude and cool regions. In the current study, the fixed bed scouring tests were conducted in a large hydraulic flume using undisturbed soil samples taken from Hebei small watershed in the black soil region of Northeast China. The response of SER to different straw incorporation amounts (0, 1.125, 2.25, 4.5, 6.75, 9.0 and 13.5 t ha-1) was quantified after three months of straw decomposition. The major influencing factors and the corresponding mechanisms were determined. The findings demonstrated that rill erodibility firstly decreased exponentially with straw incorporation amount (R2 = 0.93), while it slightly increased when straw incorporation amount was more than 9.0 t ha-1. Critical shear stress firstly increased logarithmically (R2 = 0.90) and then slightly decreased when the amount exceeded 9.0 t ha-1. Compared to the treatment of 0 t ha-1, rill erodibility reduced by 17.0%-92.8% and critical shear stress increased by 59.6%-127.2% across different treatments of straw incorporation. Rill erodibility had significant and negative correlations with soil organic matter content, aggregate stability, cohesion, root mass density, straw mass density and straw decomposition amount. The key mechanisms for promoting SER were derived by the direct and indirect effects of straw incorporation and its decomposition on soil physicochemical properties and crop roots. The amount of 9.0 t ha-1 was recommended as the optimum amount of straw incorporation in croplands in Northeast China. These findings are useful to understand how soil erosion resistance responds to the amount of straw incorporation and make rational environmental management policy for semi-humid and cool regions.


Assuntos
Erosão do Solo , Solo , Solo/química , China , Sequestro de Carbono , Políticas
3.
Mar Environ Res ; 197: 106476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609789

RESUMO

Blue carbon ecosystems, such as mangrove, seagrass bed and salt marsh, have attracted increasing attention due to their remarkable capacity for efficient carbon sequestration. However, the current threat posed by human activities to these ecosystems necessitates the characterization of their changes and identification of the primary driving factors in order to facilitate the gradual restoration of blue carbon ecosystems. In this study, we present an analysis of the spatio-temporal characteristics and primary influencing factors governing carbon sequestration in mangrove and seagrass beds located in Hainan Island. The findings revealed a 40% decline in carbon sequestration by mangroves from 1976 to 2017, while seagrass beds exhibited a 13% decrease in carbon sequestering between 2009 and 2016. The decline in carbon sequestration was primarily concentrated in Wenchang city, with aquaculture and population growth identified as the primary driving factors. Despite the implementation of measures aimed at reducing aquaculture in Hainan Island to promote blue carbon sequestration over the past two decades, the resulting recovery remains insufficient in achieving macro-level goals for carbon sequestration. This study emphasizes the necessity of safeguarding blue carbon ecosystems in Hainan Island by effectively mitigating anthropogenic disturbances.


Assuntos
Sequestro de Carbono , Ecossistema , Humanos , Áreas Alagadas , China , Carbono/análise
4.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501699

RESUMO

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Assuntos
Sequestro de Carbono , Ecossistema , Dióxido de Carbono/análise , Suécia , Solo/química , Florestas , Metano/análise
5.
Glob Chang Biol ; 30(3): e17247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491798

RESUMO

Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0-30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30-100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long-term continuous N deposition. Finally, the lack of depth-dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition.


Assuntos
Carbono , Solo , Carbono/análise , Nitrogênio/análise , Florestas , Sequestro de Carbono , China
6.
Sci Rep ; 14(1): 7382, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548813

RESUMO

The structural characteristics of plant communities in urban green spaces have a significant impact on their carbon sequestration function. In this study, comprehensive data were collected from 106 plant communities (each 20 m × 20 m) in Zhengzhou Green Expo Park. We assessed aboveground and soil carbon storage, alongside maintenance carbon emissions, to quantify carbon dynamics. Our primary objective was to establish a statistical model that correlates the structural attributes of plant communities with their total annual carbon sequestration. This model aims to provide a quantitative framework for optimizing community structures to maximize carbon sequestration in urban green spaces. The results showed that density and coverage were significantly and positively correlated with aboveground and soil carbon stocks. Density and mean height were significantly and positively correlated with maintenance carbon emissions. Density played a key structural role in regulating the total carbon sequestration of the plant communities, being 27.24 times more effective than coverage. The total annual carbon sequestration of the plant community reached an optimal value of 327.67 kg CO2-eq/y-1 at a density and cover of 0.15 and 1, respectively. This study provides valuable data for increasing the carbon sink ability of urban green spaces through plant structure regulation and supporting low-carbon development strategies in urban management.


Assuntos
Sequestro de Carbono , Parques Recreativos , Plantas , Carbono , Solo/química
7.
Sci Total Environ ; 924: 171748, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38494011

RESUMO

Australia, characterized by extensive and heterogeneous terrestrial ecosystems, plays a critical role in the global carbon cycle and in efforts to mitigate climate change. Prior research has quantified vegetation productivity and carbon balance within the Australian context over preceding decades. Nonetheless, the responses of vegetation and carbon dynamics to the evolving phenomena of climate change and escalating concentrations of atmospheric carbon dioxide remain ambiguous within the Australian landscape. Here, we used LPJ-GUESS model to assess the impacts of climate change on Gross Primary Productivity (GPP) and Net Biome Productivity (NBP) of carbon for the state of New South Wales (NSW) in southeastern Australia. LPJ-GUESS simulations were driven by an ensemble of 27 global climate models under different emission scenarios. We investigated the change of GPP for different vegetation types and whether NSW ecosystems will be a net sink or source of carbon under climate change. We found that LPJ-GUESS successfully simulated GPP for the period 2003-2021, demonstrating a comparative performance with GPP derived from upscaled eddy covariance fluxes (R2 = 0.58, nRMSE = 14.2 %). The simulated NBP showed a larger interannual variation compared with flux data and other inversion products but could capture the timing of rainfall-driven carbon sink and source variations in 2015-2020. GPP would increase by 10.3-19.5 % under a medium emission scenario and 19.7-46.8 % under a high emission scenario. The mean probability of NSW acting as a carbon sink in the future showed a small decrease with a large uncertainty with >8 of the 27 climate models indicating an increased potential for carbon sink. These findings emphasize the significance of emission scenarios in shaping future carbon dynamics but also highlight considerable uncertainties stemming from different climate projections. Our study represents a baseline for understanding natural ecosystem dynamics and their key role in governing land carbon uptake and storage in Australia.


Assuntos
Ciclo do Carbono , Ecossistema , Austrália , Sequestro de Carbono , Previsões , Mudança Climática , Dióxido de Carbono/análise
8.
Sci Total Environ ; 925: 171825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513852

RESUMO

Carbon dioxide (CO2) is a primary greenhouse gas that has experienced a surge in atmospheric concentration due to human activities and lifestyles. It is imperative to curtail atmospheric CO2 levels promptly to alleviate the multifaceted impacts of climate warming. The soil serves as a natural reservoir for CO2 sequestration. The scientific premise of this study is that CO2 sequestration in agriculturally relevant, organically-deficient saline soil can be achieved by incorporating alkaline earth silicates. Volcanic ash (VA) was used as a soil amendment for CO2 removal from saline soil by leveraging enhanced silicate rock weathering (ERW). The study pursued two primary objectives: first, we aimed to evaluate the impact of various doses of VA, employed as an amendment for organically-deficient soil, on the growth performance of key cultivated crops (sorghum and mung bean) in inland saline-alkaline agricultural regions of northeastern China. Second, we aimed to assess alterations in the physical properties of the amended soil through mineralogical examinations, utilizing X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) analyses, quantifying the increase in inorganic carbon content within the soil. In the potting tests, mung bean plant height exhibited a noteworthy increase of approximately 41 % with the addition of 10 % VA. Sorghum plant height and aboveground and belowground biomass dry weights increased with VA application across all tested doses. At the optimal VA application rate (20 %), the sorghum achieved a CO2 sequestration rate of 0.14 kg CO2·m-2·month-1. XRD and SEM-EDS analyses confirmed that the augmented inorganic carbon in the VA-amended soils stemmed primarily from calcite accumulation. These findings contribute to elucidating the mechanism underlying VA as an amendment for organically-deficient soils and provide an effective approach for enhancing the carbon sink capacity of saline soils.


Assuntos
Solo , Sorghum , Humanos , Solo/química , Dióxido de Carbono/análise , Erupções Vulcânicas , Agricultura , Tempo (Meteorologia) , Grão Comestível/química , Sequestro de Carbono , Silicatos
9.
Ying Yong Sheng Tai Xue Bao ; 35(1): 102-110, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511446

RESUMO

Microorganisms are essential actors in the biogeochemical cycling of elements within terrestrial ecosystems, with significant influences on soil health, food security, and global climate change. The contribution of microbial anabolism-induced organic compounds is a non-negligible factor in the processes associated with soil carbon (C) storage and organic matter preservation. In recent years, the conceptual framework of soil microbial carbon pump (MCP), with a focus on microbial metabolism and necromass generation process, has gained widespread attention. It primarily describes the processes of soil organic C formation and stabilization driven by the metabolic activities of soil heterotrophic microorganisms, representing an important mechanism and a focal point in current research on terrestrial C sequestration. Here, we reviewed the progress in this field and introduced the soil MCP conceptual framework 2.0, which expands upon the existing MCP model by incorporating autotrophic microbial pathway for C sequestration and integrating the concept of soil mineral C pump. These advancements aimed to enrich and refine our understanding of microbial-mediated terrestrial ecosystem C cycling and sequestration mechanisms. This refined framework would provide theoretical support for achieving China's "dual carbon" goals.


Assuntos
Carbono , Ecossistema , Carbono/química , Solo/química , Microbiologia do Solo , Ciclo do Carbono , Sequestro de Carbono
10.
Ying Yong Sheng Tai Xue Bao ; 35(1): 111-123, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511447

RESUMO

Soil organic carbon (SOC) is the core component of terrestrial carbon (C) sink. Exploring the transformation and stabilization mechanism of SOC is key to understand the function of terrestrial C sink which copes with climate change. The traditional perspective is that plant residues are the initial source of SOC. The new concept of "soil microbial C pump" emphasizes that the synthesized products of soil microbial assimilation are important contributors to the stable SOC. This provides a new insight to the sequestration mechanism of SOC. Due to the complex and variable decomposition process of plant residues and the high heterogeneity of microbial residues, the transformation and stabilization mechanism of plant residues and microbial residues into SOC is still unclear. We reviewed research progress in plant and microbial residues, and introduced the characterization methods of quantification and transformation of plant residues and microbial residues, and also summarized the new findings on the transformation of plant and microbial residues into SOC. We further discussed the contribution and driving factors of microbial and plant-derived C to SOC. Finally, we prospected the future development direction and research focus in this field. This review would provide the scientific reference for the research of soil C sequestration in terrestrial ecosystem.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Sequestro de Carbono , Celulose , Plantas , Microbiologia do Solo
11.
Glob Chang Biol ; 30(3): e17229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511643

RESUMO

A clear definition of carbon sequestration in soils is necessary to quantify soil's role in climate change mitigation accurately. Don et al. (2023) proposed defining carbon sequestration as "[the] Process of transferring carbon from the atmosphere into the soil through plants or other organisms, which is retained as soil organic carbon resulting in a global carbon stock increase of the soil". In our view, this definition is incomplete because a comprehensive definition of carbon sequestration should explicitly include the time that carbon remains stored in an ecosystem, thus mitigating its contribution to the greenhouse effect.


Assuntos
Ecossistema , Solo , Sequestro de Carbono , Carbono , Mudança Climática
12.
Glob Chang Biol ; 30(3): e17223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454532

RESUMO

Among options for atmospheric CO2 removal, sequestering soil organic carbon (SOC) via improved grazing management is a rare opportunity because it is scalable across millions of globally grazed acres, low cost, and has high technical potential. Decades of scientific research on grazing and SOC has failed to form a cohesive understanding of how grazing management affects SOC stocks and their distribution between particulate (POM) and mineral-associated organic matter (MAOM)-characterized by different formation and stabilization pathways-across different climatic contexts. As we increasingly look to grazing management for SOC sequestration on grazinglands to bolster our climate change mitigation efforts, we need a clear and collective understanding of grazing management's impact on pathways of SOC change to inform on-the-ground management decisions. We set out to review the effects of grazing management on SOC through a unified plant ecophysiology and soil biogeochemistry conceptual framework, where elements such as productivity, input quality, soil mineral capacity, and climate variables such as aridity co-govern SOC accumulation and distribution into POM and MAOM. To maximize applicability to grazingland managers, we discuss how common management levers that drive overall grazing pattern, including timing, intensity, duration, and frequency can be used to optimize mechanistic pathways of SOC sequestration. We discuss important research needs and measurement challenges, and highlight how our conceptual framework can inform more robust research with greater applicability for maximizing the use of grazing management to sequester SOC.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Mudança Climática , Minerais
13.
Glob Chang Biol ; 30(3): e17239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500015

RESUMO

Dissimilatory iron reduction (DIR) can drive the release of organic carbon (OC) as carbon dioxide (CO2 ) by mediating electron transfer between organic compounds and microbes. However, DIR is also crucial for carbon sequestration, which can affect inorganic-carbon redistribution via iron abiotic-phase transformation. The formation conditions of modern carbonate-bearing iron minerals (ICFe ) and their potential as a CO2 sink are still unclear. A natural environment with modern ICFe , such as karst lake sediment, could be a good analog to explore the regulation of microbial iron reduction and sequential mineral formation. We find that high porosity is conducive to electron transport and dissimilatory iron-reducing bacteria activity, which can increase the iron reduction rate. The iron-rich environment with high calcium and OC can form a large sediment pore structure to support rapid DIR, which is conducive to the formation and growth of ICFe . Our results further demonstrate that the minimum DIR threshold suitable for ICFe formation is 6.65 µmol g-1 dw day-1 . DIR is the dominant pathway (average 66.93%) of organic anaerobic mineralization, and the abiotic-phase transformation of Fe2+ reduces CO2 emissions by ~41.79%. Our findings indicate that as part of the carbon cycle, DIR not only drives mineralization reactions but also traps carbon, increasing the stability of carbon sinks. Considering the wide geographic distribution of DIR and ICFe , our findings suggest that the "iron mesh" effect may become an increasingly important vector of carbon sequestration.


Assuntos
Sequestro de Carbono , Ferro , Ferro/química , Ferro/metabolismo , Dióxido de Carbono , Oxirredução , Ciclo do Carbono , Compostos Férricos/metabolismo
14.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508101

RESUMO

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Assuntos
Bacillus cereus , Carbono , Sequestro de Carbono , Ribulose-Bifosfato Carboxilase , Solo/química , Carvão Vegetal/química , Agricultura/métodos
15.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502702

RESUMO

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Assuntos
Manganês , Taiga , Carbono , Solo , Sequestro de Carbono , Florestas
16.
J Environ Manage ; 356: 120609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498961

RESUMO

Improving resource use is a pressing research issue because of the huge potential organic waste market. Composting is a recycling technique, treatment to achieve the dual effect of resource recovery and zero waste. Waste composition varies: for example, chicken manure is rich in protein, straw contains wood fibres, fruit and vegetables contain sugar, and food waste contains starch. When considering combining waste streams for composting, it is important to ask if this approach can reduce overall composting costs while achieving a more concentrated result. Chicken manure, in particular, presents a unique challenge. This is due to its high protein content. The lack of precursor sugars for glucosamine condensation in chicken manure results in lower humus content in the final compost than other composting methods. To address this, we conducted experiments to investigate whether adding sugary fruits and vegetables to a chicken manure composting system would improve compost quality. To improve experimental results, we used sucrose and maltose instead of fruit and vegetable waste. Sugars added to chicken manure composting resulted in a significant increase in humic substance (HS) content, with improvements of 9.0% and 17.4%, respectively, compared to the control. Sucrose and maltose have a similar effect on the formation of humic substances. These results demonstrate the feasibility of composting fruit and vegetable waste with chicken manure, providing a theoretical basis for future composting experiments.


Assuntos
Compostagem , Eliminação de Resíduos , Animais , Esterco , Galinhas , Açúcares , Maltose , Sequestro de Carbono , Solo , Substâncias Húmicas , Verduras , Sacarose , Carbono
17.
Environ Sci Pollut Res Int ; 31(14): 22038-22054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400969

RESUMO

A comprehensive understanding of the terrestrial carbon sink is essential for proficient regional carbon management. However, previous studies predominantly relied on net ecosystem productivity (NEP) as an indicator of regional carbon sink, overlooking the impacts of carbon emissions from physical processes and carbon leakage associated with anthropogenic activities. In this study, net region productivity (NRP), a vital metric representing carbon sink dynamics in regional multi-landscape ecosystems, was employed to systematically analyze the patterns, trends, and causes of carbon sink in Ordos. The results revealed that spatially averaged NRP in Ordos was 70.334 g·m-2·a-1, indicating a carbon sink effect. The coefficient of variation of NRP was 68.035%, with a higher NRP in the southern region. Normalized difference vegetation index (NDVI) predominantly controlled the spatial heterogeneity of NRP in Ordos, while precipitation emerged as the primary climatic factor influencing spatial differences in NRP. Regional variations in the impact of environmental factors on NRP were evident. In most areas, NRP showed a notable increasing trend influenced by various factors. Specifically, the simultaneous rise in NDVI and improvements in hydrothermal conditions contributed to the gradual elevation of NRP, each with varying degrees of influence across Ordos and its sub-regions.


Assuntos
Sequestro de Carbono , Ecossistema , China , Carbono/análise , Causalidade
18.
J Environ Manage ; 353: 120295, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330839

RESUMO

This paper examines the socio-ecological resilience within China's Northeast National Forest Region (NNFR), focusing on the implications of climate change for forest management and carbon sequestration. It offers a critical assessment of the Natural Forest Protection Program (NFPP) and the associated logging ban policy, recognizing their pivotal contributions to forest conservation but also identifying the shortcomings of a one-size-fits-all approach. Integrating panarchy theory, the study proposes sustainable management practices that align ecological dynamics with societal needs, emphasizing nature-based solutions. The overarching aim is to bolster the long-term resilience and enhance the carbon sequestration potential of the NNFR's forests. It aims to inform global environmental strategy with lessons from the NNFR, advocating for integrated approaches that ensure both ecological sustainability and community prosperity. This approach seeks to provide a comprehensive and effective strategy for addressing environmental challenges, ensuring both ecological integrity and community well-being.


Assuntos
Ecossistema , Resiliência Psicológica , Florestas , Sequestro de Carbono , China , Conservação dos Recursos Naturais
19.
J Environ Manage ; 353: 120288, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335600

RESUMO

The spatial distribution of plant, soil, and microbial carbon pools, along with their intricate interactions, presents a great challenge for the current carbon cycle research. However, it is not clear what are the characteristics of the spatial variability of these carbon pools, particularly their cross-scale relationships. We investigated the cross-scale spatial variability of microbial necromass carbon (MNC), soil organic carbon (SOC) and plant biomass (PB), as well as their correlation in a tropical montane rainforest using multifractal analysis. The results showed multifractal spatial variations of MNC, SOC, and PB, demonstrating their adherence to power-law scaling. MNC, especially low MNC, exhibited stronger spatial heterogeneity and weaker evenness compared with SOC and PB. The cross-scale correlation between MNC and SOC was stronger than their correlations at the measurement scale. Furthermore, the cross-scale spatial variability of MNC and SOC exhibited stronger and more stable correlations than those with PB. Additionally, this research suggests that when SOC and PB are both low, it is advisable for reforestations to potentiate MNC formation, whereas when both SOC and PB are high some thinning can be advisable to favour MNC formation. Thus, these results support the utilization of management measures such as reforestation or thinning as nature-based solutions to regulate carbon sequestration capacity of tropical forests by affecting the correlations among various carbon pools.


Assuntos
Sequestro de Carbono , Floresta Úmida , Carbono , Solo , Florestas
20.
New Phytol ; 242(3): 858-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38375596

RESUMO

A conceptual understanding on how the vegetation's carbon (C) balance is determined by source activity and sink demand is important to predict its C uptake and sequestration potential now and in the future. We have gathered trajectories of photosynthesis and growth as a function of environmental conditions described in the literature and compared them with current concepts of source and sink control. There is no clear evidence for pure source or sink control of the C balance, which contradicts recent hypotheses. Using model scenarios, we show how legacy effects via structural and functional traits and antecedent environmental conditions can alter the plant's carbon balance. We, thus, combined the concept of short-term source-sink coordination with long-term environmentally driven legacy effects that dynamically acclimate structural and functional traits over time. These acclimated traits feedback on the sensitivity of source and sink activity and thus change the plant physiological responses to environmental conditions. We postulate a whole plant C-coordination system that is primarily driven by stomatal optimization of growth to avoid a C source-sink mismatch. Therefore, we anticipate that C sequestration of forest ecosystems under future climate conditions will largely follow optimality principles that balance water and carbon resources to maximize growth in the long term.


Assuntos
Carbono , Ecossistema , Fotossíntese/fisiologia , Clima , Fenótipo , Dióxido de Carbono , Sequestro de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...